

MACHINE-TO-MACHINE COMMUNICATION

Edmund W. Schuster Laboratory for Manufacturing and Productivity Massachusetts Institute of Technology

Jun. 23, 2011

The MIT Motto

Mens et Manus

"Mind and Hand"

Prof. Ian Waitz on MIT History

- -- First 75 years: Build Infrastructure
- -- Second 75 years: Build Industries
- -- Next 75 years: Build a better Planet

INTRODUCTION

MIT LABORATORY FOR MANUFACTURING AND PRODUCTIVITY

CHANGE

INTERDISCIPLINARY

nano

macro

info

bio

Adapted from Prof. Jung-Hoon Chun, MIT

THREE FOCUS AREAS

- Renewable Energy and Environmentally Benign Manufacturing
 - Sustainable technologies and manufacturing processes
 - Photovoltaics
- Micro and Nano Scale Manufacturing
 - Processes for micro fluidic devices
 - Nano positioning devices
 - Fuel cells
 - Surface science and engineering
- Manufacturing Systems and Information Technology
 - Ubiquitous computing, supply chain analysis, and Internet computing

ORGANIZATION

LMP - School of Engineering Interdisciplinary Group

About 150 Faculty, Researchers, Staff, and Students

Degrees: Ph.D., SM, Meng, SB

Field Intelligence Lab

Ubiquitous computing

Post-desktop model of human-computer interaction where information processing has been integrated into everyday objects and activities.

Ref. http://en.wikipedia.org/wiki/Ubiquitous_computing

AUTO-ID LABS

Historical

- Connect physical objects to the internet
- Leader in RFID research for supply chain
- Prototype industry academic consortium
- Creation of EPCglobal in 2003, part of GS1
- Network of Labs
 - Fudan University, Keio University,

KAIST, U. of Adelaide, ETH, Cambridge

• Future

- Wide concept of application
- Mix with other technologies
 - Active tags, 2-d bar codes, linear bar codes, GPS, WiMax

PROJECTS

- RFID in Challenging Environments
 - Improved performance with meta-material tags
- Beyond Identification
 - Tag Antenna based Sensors
- Software Tools for RFID
 - RFIDSim a physical and logical layer simulation engine
 - Open Source EPC Network Toolkit
- "Non Real-Time Location Systems"
 - Object Localization using RFID readers mounted on autonomous vehicles
- **RFID Security and Privacy Issues**

Eliminate the boundaries between the Internet and Enterprise computing.

MATH MODELING (1998)

The Danger of Incremental Thinking in Engineering

Space Station Design

Goodyear Aircraft Corporation, 1960's

INTERNET EVOLUTION

The Web of Information

- HTML, static web pages, www
- The Web of Things
 - Linking physical objects together, RFID
 - EPCglobal Network

The Web of Abstractions

- Interoperability, data and mathematical models
- Computer languages and protocols for connections
- Software as a Service (SaaS)

$$E(ACL) = \int_{L=-\infty}^{L=\infty} \left\{ \int_{H=RL}^{H=\infty} (H-RL)f(H)dH \right\} f(L)dL \quad (4)$$

I. DATA AND MODELS

Kratulos

Example: Agricultural Data

Massachusetts Institute of Technology $\ensuremath{\mathbb{C}}$ 2010

PROBLEM DEFINITION

Combine surface observation data of disease with temperature data from NOAA.

Both data sources are available via the Internet.

Form a set of data.

SURFACE DATA

30 YEARS OF ENGINEERING THE REAL WORLD

Massachusetts Institute of Technology $\ensuremath{\mathbb{C}}$ 2010

AGRICULTURAL EXAMPLE

30 YEARS OF ENGINEERING THE REAL WORLD

Field Scouting

http://ingehygd.blogspot.com/2009/04/serveon-pda-demo.html

DATA INTEGRATION

Two separate streams of data

- Observations from the field
- Weather data from NOAA

Form an integrated data set for analysis

- Attach a logit model
- Project disease growth rate

• Weather data

- Point observation
- Interpolation required

Kratulos is the underlying architecture and code

The core is Oracle 11g.

Kratulos is a general approach for merging data and connecting models.

- <Rows> - < Row >

> </Row> </Rows>

Laboratory for Manufacturing and Productivity

SEMANTIC CONVERSION

V	iew Machine: Weather Merge	Edit Machine Expert View 🗙
ß	Weather Merge (id:83, category:translators) Replace text with Machine details.	
F R V	Rating: * * * * Views: 0 Builder: Hyoung-Gon Lee (hg_lee Raw Input Required 🗹 Veb Service Link: http://mlanguage.mit.edu/services/index.php?s	ervice=RunMachine&machine.9_id.2=83&data.1=your data here
	Run Machine	Switch to Easy Input Mode
	Machine Input:	Machine Output:
	<rows> <rows> <wbannumber>12842</wbannumber> <yearmonthday>20070701</yearmonthday> <maxtemp>91</maxtemp> <mintemp>76</mintemp> <windavgspeed>5.9</windavgspeed></rows></rows>	<row.5> <row.5> <wban_number.1>12842</wban_number.1> <date.1>20070701</date.1> <maximum_temperature.1>91</maximum_temperature.1></row.5></row.5>
	Add Comment	
.NNumber> 12842 MonthDay> 20070701 Temp> 91 Temp> 76 dAvgSpeed> 5.9 ipitationWaterEquiv> 0 <td>- <row.5> - <row.5> - <row.5> - <row.5> - <wban_n <date.1> <maximum <mimimum <average ecipitationWaterEquiv> ec</average </mimimum </maximum </date.1></wban_n </row.5></row.5></row.5></row.5></td> <td>umber>12842 20070701 n_temperature.1>91n_temperature.1>76wind_speed.1>5.9tion.4>0</td>	- <row.5> - <row.5> - <row.5> - <row.5> - <wban_n <date.1> <maximum <mimimum <average ecipitationWaterEquiv> ec</average </mimimum </maximum </date.1></wban_n </row.5></row.5></row.5></row.5>	umber> 12842 20070701 n_temperature.1>91n_temperature.1>76wind_speed.1> 5.9 tion.4>0

M-XML

30 YEARS OF ENGINEERING THE REAL WORLD

<WeatherReference>

<FARM_REPORT>RBFC0I0514</FARM_REPORT> - <FIELDAGGR> - <FIELDAGGR_TYP field.12="Crews Lake"> Pest Data <farm.1>RBFCOI</farm.1> - <OBSERVE_NTAB> <?xml version-1.0" encoding-- <OBSERVE_TYP date.1="20080514" time.6="02, 25"> - <Root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <measurement.1>Citrus Greening</measurement.1> <Farm_Report>RBFCOI0514 /Farm_Report> <form.9>Infection</form.9> - <rows> <type.1>Disease</type.1> - <row> </OBSERVE_TYP> <farm.1>RBFCOI</farm.1> <field.12>Crews Lake</fie - <OBSERVE_TYP date.1="20080514" time.6="02, 11"> Weather Data <block.9>Cline</block.9> <measurement.1>Citrus Greening</measurement.1> <measurement.1>Citrus C <form.9>Infection</form.9> <form.9>Infection< <?xml version="1.0" encoding="UTF-8" standalone="yes" ?> <type.1>Disease</type.1> <type.1>Disease</ <Root xmlns:xsi="http://www.w3.org/2001/XMLSchema </OBSERVE_TYP> <rating.2>Sampled <AggrMonth>200805-late</AggrMonth> + <OBSERVE TYP date.1="20080515" time.6="02, 52"> <date.1>20080514 - <rows> <OBSERVE TYP /> <time.6>13, 39</tir - <row> </OBSERVE_NTAB> <observation.4>Ora <wbanNumber.1>12842</wbanNumber.1> </FIELDAGGR TYP> <observation.1_part</pre> <date.1>20080514</date.1> + <FIELDAGGR_TYP field.12="Lake Hancock"> <latitude.1>27.94<</pre> <max_temp.1>80</max_temp.1> + <FIELDAGGR_TYP field.12="Alturas"> <lonaitude.1>-81.9 <min_temp.1>69</min_temp.1> + <FIELDAGGR TYP Field f="Trask Area"> </row> </row> </FIELDAGGR> - < row >- <row> <farm.1>RBFCOI</ - <station.1> <wbanNumber.1>12842</wbanNumber.1> <field.12>Crews La <wbanNumber.1>12842</wbanNumber.1> <block.9>Cline</block <date.1>20080515</date.1> <location.1>TAMPA, FL</location.1> <measurement.1>Ci <max temp.1>80</max temp.1> <latitude.1>27.58</latitude.1> <form.9>Infection< <min_temp.1>68</min_temp.1> <longitude.1>-82.32</longitude.1> <type.1>Disease</type </row> - <WEATHERHISTORY NTAB> <rating.2>Sampled - <row> - <WEATHERHISTORY_TYP date.1="20080514"> <date.1>20080514 <wbanNumber.1>12842</wbanNumber.1> <max_temp.1>80</max_temp.1> <time.6>13, 38</til <date.1>20080516</date.1> <min_temp.1>69</min_temp.1> <observation.4>Ora <max_temp.1>82</max_temp.1> </WEATHERHISTORY_TYP> <observation.1_part <min_temp.1>70</min_temp.1> - <WEATHERHISTORY TYP date.1="20080515"> <latitude.1>27.94< </row> <max_temp.1>80</max_temp.1> <longitude.1>-81.9 - <row> <min_temp.1>68</min_temp.1> </row> <wbanNumber.1>12842</wbanNumber.1> </WEATHERHISTORY_TYP> - <row> <date.1>20080517</date.1> + <WEATHERHISTORY_TYP date.1="20080516"> <WEATHERHISTORY_TYP /> <max temp.1>83</max temp.1> <min_temp.1>70</min_temp.1> </WEATHERHISTORY NTAB> </row> </station.1> </WeatherReference> - <row>

MERGED DATA – EXCEL

30 YEARS OF ENGINEERING THE REAL WORLD

	🕞 🖟 🕈 - WeatherMerge.xlsm - Microsoft Excel non-commercial use														
C	Home Insert Page Javout Formulas Data Review View Add.Ins									x					
													0		
	Setup *														
	WeatherMerge *														
N	Manu Commande														
	A1	- (°	f _x												¥
	А	В	с	D	E	F		J	К	L	М	N	0		
											10/4				
				Pest Data					weather Data						=
				X Provider						NOAA					
1		1													_
2	field_name.1	farm_name.1	event_date.1	pest_common_name.1	pest_form_name.1	pest_type_name.1		date.1	location.1	latitude.1	longitude.1	max_temperature.1	min_temperature.1	avera	g
3	Lake Hancock	RBFCOI	20070701	Citrus Greening	Infection	Disease		20070701	TAMPA, FL	27.58	-82.32	91	76	i	
4	Lake Hancock	RBFCOI	20070701	Citrus Greening	Infection	Disease		20070701	TAMPA, FL	27.58	-82.32	91	76	5	
5	Lake Hancock	RBFCOI	20070701	Citrus Greening	Infection	Disease		20070701	TAMPA, FL	27.58	-82.32	91	76	6 1	
6	Lake Hancock	RBFCOI	20070701	Citrus Greening	Infection	Disease		20070701	TAMPA, FL	27.58	-82.32	91	76	5	
7	Lake Hancock	RBFCOI	20070701	Citrus Greening	Infection	Disease		20070701	TAMPA, FL	27.58	-82.32	91	76	6 1	
8	Lake Hancock	RBFCOI	20070701	Citrus Greening	Infection	Disease		20070701	TAMPA, FL	27.58	-82.32	91	76	\$	
9	Lake Hancock	RBFCOI	20070701	Citrus Greening	Infection	Disease		20070701	TAMPA, FL	27.58	-82.32	91	76	1	
10	Lake Hancock	RBFCOI	20070702	Citrus Greening	Infection	Disease		20070702	TAMPA, FL	27.58	-82.32	90	74	ł –	
11	Lake Hancock	RBFCOI	20070702	Citrus Greening	Infection	Disease		20070702	TAMPA, FL	27.58	-82.32	90	74	4	
12	Lake Hancock	RBFCOI	20070702	Citrus Greening	Infection	Disease		20070702	TAMPA, FL	27.58	-82.32	90	74	ł –	
13	Lake Hancock	RBFCOI	20070702	Citrus Greening	Infection	Disease		20070702	TAMPA, FL	27.58	-82.32	90	74	ł –	
14	Lake Hancock	RBFCOI	20070702	Citrus Greening	Infection	Disease		20070702	TAMPA, FL	27.58	-82.32	90	74	,	
15	Lake Hancock	RBFCOI	20070702	Citrus Greening	Infection	Disease		20070702	TAMPA, FL	27.58	-82.32	90	74	4	
16	Lake Hancock	RBFCOI	20070703	Citrus Greening	Infection	Disease		20070703	TAMPA, FL	27.58	-82.32	90	75	()	
17	Lake Hancock	RBFCOI	20070703	Citrus Greening	Infection	Disease		20070703	TAMPA, FL	27.58	-82.32	90	75	(
18	Lake Hancock	RBFCOI	20070703	Citrus Greening	Infection	Disease		20070703	TAMPA, FL	27.58	-82.32	90	75	()	
19	Lake Hancock	RBFCOI	20070703	Citrus Greening	Infection	Disease		20070703	TAMPA, FL	27.58	-82.32	90	75	ł	
20	Lake Hancock	RBFCOI	20070703	Citrus Greening	Infection	Disease		20070703	TAMPA, FL	27.58	-82.32	90	75	1	
21	Lake Hancock	RBFCOI	20070703	Citrus Greening	Infection	Disease		20070703	TAMPA, FL	27.58	-82.32	90	75	1	
22	Lake Hancock	RBFCOI	20070703	Citrus Greening	Infection	Disease		20070703	TAMPA, FL	27.58	-82.32	90	75	·	
23	Lake Hancock	RBFCOI	20070703	Citrus Greening	Infection	Disease		20070703	TAMPA, FL	27.58	-82.32	90	75	ł	
24	Lake Hancock	RBFCOI	20070703	Citrus Greening	Infection	Disease		20070703	TAMPA, FL	27.58	-82.32	90	75	1	
25	Lake Hancock	RBFCOI	20070703	Citrus Greening	Infection	Disease		20070703	TAMPA, FL	27.58	-82.32	90	75	1	
26	Lake Hancock	RBFCOI	20070703	Citrus Greening	Infection	Disease		20070703	TAMPA, FL	27.58	-82.32	90	75	1	
27	Lake Hancock	RBFCOI	20070703	Citrus Greening	Infection	Disease		20070703	TAMPA, FL	27.58	-82.32	90	75	1	
28	Lake Hancock	RBFCOI	20070703	Citrus Greening	Infection	Disease		20070703	TAMPA, FL	27.58	-82.32	90	75	1	
29	Lake Hancock	RBFCOI	20070703	Citrus Greening	Infection	Disease		20070703	TAMPA, FL	27.58	-82.32	90	75		
Per	adv 🔛	Kesearcher 2 %										ma	III 100%		

Massachusetts Institute of Technology © 2010

Click on a word and the exact definition appears as a pop-up.

On the following slide, field_name.1 appears as an embedded word.

It is linked directly to the M Dictionary, located on a remote server.

WORD DEFINITION

C) 	- 👟 - W	/eatherMerge.xlsr	n - Microsoft Excel non-	commercial use	able Tools			×
	Home 1	Insert Page Lay	out Formulas	Data Review	View Add-Ins	Design	(o – 📼	×
	Setup * WeatherMerge *								
N	lenu Commands								
	A6	- (9	<i>f</i> _≭ Lake Hance	ock					≽
	A B		С	D	E	F	- I	J	
1				Pest Data X Provider	4				
2	field_name.1	farm_name.1	event_date.1	pest_common_name.1	pest_form_name.1	pest_type_name.1		date.1	
3	Lake - Definition	n: The name give	en to a field by a	arower. This is part of the	e set-up procedure	Disease		200707	7
4	Lake					Disease		200707	7
5	Lake Hancock	RBFCOI	20070701	Citrus Greening	Infection	Disease		200707	7
6	Lake Hancock	RBFCOI	20070701	Citrus Greening	Infection	Disease		200707	7
7	Lake Hancock	RBFCOI	20070701	Citrus Greening	Infection	Disease		200707	7
8	Lake Hancock	RBFCOI	20070701	Citrus Greening	Infection	Disease		200707	7
9	Lake Hancock	RBFCOI	20070701	Citrus Greening	Infection	Disease		200707	7
10	Lake Hancock	RBFCOI	20070702	Citrus Greening	Infection	Disease		200707	7
11	Lake Hancock	RBFCOI	20070702	Citrus Greening	Infection	Disease		200707	7
12	Lake Hancock	RBFCOI	20070702	Citrus Greening	Infection	Disease		200707	7
13	Lake Hancock	RBFCOI	20070702	Citrus Greening	Infection	Disease		200707	7
14	Lake Hancock	RBFCOI	20070702	Citrus Greening	Infection	Disease		200707	7
15	Lake Hancock	RBFCOI	20070702	Citrus Greening	Infection	Disease		200707	7
16	Lake Hancock	RBFCOI	20070703	Citrus Greening	Infection	Disease		200707	7
17	Lake Hancock	RBFCOI	20070703	Citrus Greening	Infection	Disease		200707	7
18	Lake Hancock	RBFCOI	20070703	Citrus Greening	Infection	Disease		200707	7
<u>19</u>	Lake Hancock → ► H Home	RBFCOI Researcher	20070703	Citrus Greening	Infection	Disease		200707	7
Rea	ady 🛅					III II 100% (∍	+	

LOGIT MODEL

$$P(t) = 1/(1+e^{-t})$$

$$P(t) = K/(1+(B*Exp(-(GR) * t)))$$

Where:

K = maximum environmental capacityGR = the modified Allen growth rateB = initial pest density at t=0

- New approach for projecting disease growth in agriculture
 - Weather/surface observation data set created instantaneously
- WeatherMerge™ intended as a form of ERP for agriculture
- Long-term, replace human scout with robot
- Broader applications in ecosystems services

II. INTERNET AND THE ENTERPRISE

Lee-Schuster Semantic Enterprise Architecture

Example: The Open System for Master Production Scheduling (OSMPS)

HIGHLIGHTS

• Open Systems

- Open source versus open systems
- Powerful trend in the computer industry, replacement for ERP software
- M Dictionary and other web standards
 - mlanguage.mit.edu

Software as a Service

- Access a sophisticated model on a remote server using a spreadsheet interface that can reside on any microcomputer with Internet link
- Match a specific model to a specific problem
- In contrast to *Kratulos*, no database
- No implementation of model on local computer, access is immediate, simple interface

ARCHITECTURE

Internet Based

- Boundary
 - Concerns about security
 - M Dictionary becomes complex
 - Loss of control over words and noun phrases
 - Business model

Enterprise Based

Intra firm IT connections

- Machine understandable
- Quick and low cost
- Flexible
- Semantic intranet

Semantic Web 3.0

- Connections
 - RFD and OWL
- Reasoning
 - Use Semantic web trees
- Discovery
 - Relationship between knowledge elements
- Other

Limitation: tree semantics

Lee-Schuster Semantic Enterprise Architecture

Intranet (firm) or Internet

Example: Open System for Master Production Scheduling (OSMPS)

Overcomes semantic ambiguity

A need exists for low cost scheduling software.

Typical ERP scheduling packages cost more than \$100,000 including installation.

THE PROCESS INDUSTRIES

Manufacturing operations that include:

High speed manufacturing lines (example, bottle filling)

Major industries

- Food
- Chemical
- Pharmaceutical
- Paper
- Biotechnology

• The sector is probably 50% of worldwide manufacturing

TRAITS

Wide range of environments

- Continuous vs. batch process
- No universal solutions
 - Wide differences between different segments
- High customer service expectations
 - 99% percent cases ordered vs. cases shipped

Dynamic demand

- Sudden changes in demand
- Characterized as "lumpy"

Repetitive manufacturing

- Production of similar products using a common machine

OTHER

- Example; metal parts such as screws
- High volume
- Fixed capacity; multiple products

Non manufacturing

- Agriculture, defense, publishing, services
- Delivery of mathematical models

MODIFIED DIXON SILVER

- Make-to-stock manufacturing environment; no stock-outs or backorders permitted
- Multi-item, single level, dedicated production lines with finite capacity
- Setup times and cost are nonzero and sequence independent
- Safety stocks (buffers) are determined "outside" of the scheduling system
- MODS

MANUFACTURING SYSTEM

- Enterprise Resource Planning (ERP); exclusive system for decision making in manufacturing firms
- Critical in asset management, highly complex
- Important role in delivering customer service
- ERP is a large data base combined with models
- Delivery by packaged software
 - Maturing technology

PRODUCTION DECISIONS

30 YEARS OF ENGINEERING THE REAL WORLD

Master Production Schedule Schedule of Production Quantities by production and time period

Materials Requirements Planning System Explore master production schedule to obtain requirements for components

Detailed Job Shop Schedule To meet specification of production quantities from the MRP system

Adapted from: Nahmias, S. (1993), Production and Operations Analysis, New York: Irwin.

Massachusetts Institute of Technology © 2010

OSMPS – TWO PARTS

• The model

- MODS
- Highly sophisticated approach for make-to-stock production scheduling
- Very fast calculation speed (seconds) as compared to traditional OR approaches
- Comprehensive and robust, a candidate for a world standard

The delivery

- Excel spreadsheet interface
- Use M Dictionary
- New approach to Internet and Intranet programming

OSMPS – ONTOLOGY

The ontology is contained within the M Dictionary.

Massachusetts Institute of Technology $\ensuremath{\mathbb{C}}$ 2010

Laboratory for Manufacturing and Productivity

EXCEL SPREADSHEET

30 YEARS OF ENGINEERING THE REAL WORLD

	A	В	С	D	E	F	G	Н	1	J	К	L	М
13	Steps:												
14		1.	Enter data	in yellow	fields inc	luding pr	oduction	_capacit	y.1, fore	cast.5, c	apacity_	absorbed	.1, holdi
15		2.	(optional)	ional) Check the meaning of the words by clicking on a word; re-click to close definition box.									
16		3.	Please ma	e make sure that macros are enabled. The spreadsheet will automatically interact with the									
17		4.	Click on R	on Run OSMPS.									
18		5.	Check the	k the results (model outputs) by looking at planned_production.1, projected_invento									
19													
20			Note: Fore	cast.5 is n	etted for	beginning	g inventor	y. This ve	rsion DOE	S NOT co	ntain safe	ety stock.	
21													
22													
23	total_holding_cost.1		\$65,316										
24	total_setup_cost.1		\$274,200										
25	total_cost.1		2000 545					() OL T	-, ,				
26		- Definitio	on: The capal er machine	bility of a sy work cente	/stem to pe er plant or	erform its ex organizatio	xpected fun on to produ	iction. 2) I ce output n	he capabili er time	ty			
27		period. C	Capacity requ	ired repres	ents the sy	/stem capa	bility neede	d to make	a given				
28		product n	nix (assuming acity available	g technolog e and cana	y, product city require	specification of the second	on, etc.). A neesured in	s a planning the short i	g function, erm (canar	sity 8	9	10	11
29	production_capacity.1	requireme	ents plan), intermediate term (rough-cut capacity plan), and long term (capacity - ents plan), Capacity control is the execution through the I/O control report of the n plan. Capacity can be classified as budgeted, dedicated, demonstrated,							e 100	100	100	100
30	remaining_capacity.1	short-tern								2	о	о	24
31	additional_capacity.1	Attribute	e, protective,	, rateu, saro	er beurieti	, or theore	encal.			o	о	о	0
32			e or, moainea	_aixon_siiv	er_neunsu	<i>c. i</i>							
33			Period #										
34		ITEM #	1	2	3	4	5	6	7	8	9	10	11
35		154	0	0	0	6.3	6.3	6.8775	6.8775	6.8775	6.8775	8.841	8.841
36	forecast.5	155	0	5.88	5.88	5.88	5.88	6.4575	6.4575	6.4575	6.4575	8.82	8.82
37		156	17.052	4.5675	4.5675	4.5675	4.5675	4.9875	4.9875	4.9875	4.9875	4.557	4.557
38		157	35.28	9.555	9.555	9.555	9.555	10.21125	10.21125	10.21125	10.21125	6.678	6.678

 Forecast.5: by item: the demand for each period netted for beginning inventory, by item (cell C35 to BB36 – anticipated units sold per week).

INPUTS

- Production_capacity.1: units of capacity available (cell C29 to BB29 – total hours available for the manufacturing line or machine)
- Capacity_absorbed.1: units of capacity required for production, by item (BH35 to BH66 – hours to produce 1,000 units)

INPUTS (CONTINUED)

- Holding_cost.1: the cost of holding inventory, by item (BJ35 to BJ66 – Dollars per 1000 units per month)
- Setup_cost.1: the cost of a setup, by item (BL35 to BL66 Dollars per setup)
- Setup_time.1: the time to setup, by item (BN35 to BN66 hours per setup)

- Remaining_capacity.1: the amount of surplus capacity per week (C30 BB30, hours)
- Additional_capacity.1: the amount of capacity needed over standard capacity (C31 BB31, hours)

NOTE: the MODS algorithm makes every effort to fit production into available capacity, however, sometimes an over capacity situation exists.

Planned_production.1: the production schedule by week
 (C35 - BB66, units per week by item)

OUTPUTS (CONTINUED)

- Projected_Inventory_Levels.1: the amount of inventory remaining at the end of each week (C105 – BB136, units per week by item)
- Total_holding_cost.1: the sum of the holding cost for the 52 week period, Dollars
- Total_setup_cost.1: the sum of the setup cost for the 52 week period, Dollars
- Total_cost.1: total holding cost plus total setup cost, Dollars

SMALL SCALE EXAMPLE

30 YEARS OF ENGINEERING THE REAL WORLD

	А	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S
18																			
19	total_holding_cost.1		\$65,316		Run OSMPS!!														
20	total_setup_cost.1		\$274,200																
21	total_cost.1		\$339,516																
22																			
23			1	2	3	4	5	6	7	8									
24	production_capacity.1		100	100	100	100	100	100	100	100									
25	remaining_capacity.1		20	43	21	11	18	7	3	2									
26	additional_capacity.1		0	0	0	0	0	0	0	0									
27											ca	pacity_absorb	ed.1	holding_cost.	1	setup_cost.1	L	setup_time.	1
28		ITEM #	1	2	3	4	5	6	7	8									
29		154	0.00	0.00	0.00	6.30	6.30	6.88	6.88	6.88		0.44		\$50		\$400		1	
30	forecast.5	155	0.00	5.88	5.88	5.88	5.88	6.46	6.46	6.46		0.44		\$50		\$400		1	
31		156	17.05	4.57	4.57	4.57	4.57	4.99	4.99	4.99		0.56		\$50		\$200		1	
32		157	35.28	9.56	9.56	9.56	9.56	10.21	10.21	10.21		0.56		\$50		\$200		1	
33																			
34		ITEM #	1	2	3	4	5	6	7	8									
35		154	0.00	0.00	0.00	12.60	0.00	13.76	0.00	6.88									
36	planned_production.1	155	0.00	11.76	0.00	11.76	0.00	12.91	0.00	12.91									
37		156	21.62	0.00	9.14	0.00	9.56	0.00	9.98	0.00									
38		157	35.28	9.56	19.11	0.00	19.77	0.00	10.21	10.21									
39																			
40		ITEM #	1	2	3	4	5	6	7	8									
41	projected_inventory levels.1	154	0.00	0.00	0.00	6.30	0.00	6.88	0.00	0.00									
42		155	0.00	5.88	0.00	5.88	0.00	6.46	0.00	6.46									
43		156	4.57	0.00	4.57	0.00	4.99	0.00	4.99	0.00									
44		157	0.00	0.00	9.56	0.00	10.21	0.00	0.00	0.00									
45																			
46																			

MICROSOFT ISSUES

- OSMPS requires <u>MSXML 6.0 Service Pack 1 from Microsoft</u>.
- A firewall might block the connection to MIT
- This spreadsheet does not work in Microsoft Excel for Apple computers

III. INTRODUCTION

Details of the Theory and Technology

Massachusetts Institute of Technology $\ensuremath{\mathbb{C}}$ 2010

Each year, the amount of data grows by as much as **40** – **60** % for many organizations.

In 2004 alone, shipments of data storage devices equaled four times the space needed to store every word ever spoken during the entire course of human history.

Park, Andrew (2004), "Can EMC Find Growth Beyond Hardware?" BusinessWeek, November 1.

Lyons, Daniel (2004), "Too Much Data," *Forbes*, December 13.

BUSINESS PROBLEM

"data, data everywhere but not a byte to use."

Sunil Gupta of SAP paraphrasing Samuel Taylor Coleridge during *Smart World 2004*, sponsored by the MIT Industrial Liaison Program.

Industry needs a new form of organization for data to speed search and make connections quickly.

Models are the means of analyzing data.

Brock, David L., Edmund W. Schuster, Stuart J. Allen, and Pinaki Kar (2005), "An Introduction to Semantic Modeling for Logistical Systems," *Journal of Business Logistics* 26:2, pp. 97 – 117.

PROOF

Research, design, and implement a system for data and model integration that solves practical problems.

The focus is manufacturing, agriculture, defense, and other industries.

FUNDAMENTAL PROBLEM

"One cannot step twice into the same stream ...not even once."

Heraclitus and Cratylus (Kratulos), late 5th century BC

Words are the basis for anything intellectual.

The Greeks thought it impossible to have a system of logic because the meaning of words constantly change.

SEMANTIC AMBIGUITY

- A single word has several different meanings
- Difficult to achieve "machine understandable" semantics
- The next two slides show examples from my blog for a search on "apple."

EXAMPLE 1 – HTML

Entry Title: "Apple Chip Design Plans"

<div><span class="Apple-style-span" style="font-</pre> family:verdana;"></div>Several years ago, I worked with a group of students from EECS on a project to apply ultra low power circuit technology to RFID tags ... </ span></div><span class="Apple-style-span"</pre> style="font-family:verdana;"></div><span</pre> class="Apple-style-span" style="font-family:verdana;">It appears one of the reasons that Apple is doing chip design internally relates to the desire for technology that reduces iPhone power consumption. I very much believe this is a good idea. MIT is a leader in this type of technology.

</div>

EXAMPLE 2 – HTML

Entry Title: "My Mom and May"

<div></div><div> It was a general farm including grapes, dairy, raspberries, vegetables, stone fruits, apples, and grain crops.

EXAMPLE (CONTINUED)

- The two blog posts have no relationship, yet both appear as search results for "apple"
- HTML code is specific; content contains ambiguous words
- For XML, no uniform semantics or syntax exists
 Limit to machine understanding
- "Leading analysts have estimated that 35-65% of system integration costs are because of semantic issues*

*2006 Semantic Technology Conference, San Jose, CA.

RESEARCH GOALS

- Solve the issue of semantics and syntax for XML
- Achieve interoperability for data and mathematical models
- Create an auxiliary language to integrate models/data
- Apply to industry

PHILOSOPHY

- Integrate IT standards with innovations
 - XML, Web Services, legacy data, and M Dictionary
- Inductive, examine a specific technical problem then solve
 Industry orientation
- Separate computer code from Enterprise package software
 - User could be anywhere
 - Connect through a simple interface
- *Replication*, get model to exact application
 - Low implementation cost
 - Remove the friction of modeling

Laboratory for Manufacturing and Productivity

DATA MOLECULE

Data

30 YEARS OF ENGINEERING THE REAL WORLD

Word

Laboratory for Manufacturing and Productivity

INTERNET CONNECTION

30 YEARS OF ENGINEERING THE REAL WORLD

Internet transfer of data using XML requires prior agreement on *semantics* and *syntax* between the sender and the receiver of the data.

This is a major limitation for XML.

No universal standard exists, resulting in many forms of XML.

Laboratory for Manufacturing and Productivity

STANDARDS

30 YEARS OF ENGINEERING THE REAL WORLD

4ML	BiblioML	CIDX	eBIS-XML	HTTP-DRP	MatML	ODRL	PrintTalk	SHOE	UML	XML F
AML	BCXML	XCIL	ECML	HumanML	MathML	OeBPS	ProductionML	SIF	UBL	XML Key
AML	BEEP	CLT	eCo	HyTime	MBAM	OFX	PSL	SMML	UCLP	XMLife
AML	BGML	CNRP	EcoKnow	IML	MISML	OIL	PSI	SMBXML	UDDI	XML MP
AML	BHTML	ComicsML	edaXML	ICML	MCF	OIM	QML	SMDL	UDEF	XML News
AML	BIBLIOML	Covad xLin	k EMSA	IDE	MDDL	OLifE	QAML	SDML	UIML	XML RPC
AML	BIOML	CPL	eosML	IDML	MDSI-XML	OML	QuickData	SMIL	ULF	XML Schema
ABML	BIPS	CP eXchang	eESML	IDWG	Metarule	ONIX DTD	RBAC	SOAP	UMLS	XML Sign
ABML	BizCodes	CSS	ETD-ML	IEEE DTD	MFDX	OOPML	RDD]	SODL	UPnP	XML Query
ACML	BLM XML	CVML	FieldML	IFX	MIX	OPML	RDF	SOX	URI/URL	XML P7C
ACML	BPML	CWMI	FINML	IMPP	MMLL	OpenMath	RDL	SPML	UXF	XML TP
ACAP	BRML	CycML	FITS	IMS Global	MML	Office XML	RecipeML	SpeechML	VML	XMLVoc
ACS X12	BSML	DML	FIXML	InTML	MML	OPML	RELAX	SSML	vCalenda	rXML XCI
ADML	CML	DAML	FLBC	IOTP	MML	OPX	RELAX NG	STML	vCard	XAML
AECM	XCML	DaliML	FLOWML	IRML	MoDL	OSD	REXML	STEP	VCML	XACML
AFML	CaXML	DaqXML	FPML	IXML	MOS	ΟΤΑ	REPML	STEPML	VHG	XBL
AGML	CaseXML	DAS	FSML	IXRetail	MPML	PML	ResumeXML	SVG	VIML	XSBEL
AHML	XCBL	DASL	GML	JabberXML	MPXML	PML	RETML	SWAP	VISA XML	XBN
AIML	CBML	DCMI	GML	JDF	MRML	PML	RFML	SWMS	VMML	XBRL
AIML	CDA	DOI	GML	JDox	MSAML	PML	RightsLang	SyncML	VocML	XCFF
AIF	CDF	DeltaV	GXML	JECMM	MTML	PML	RIXML	TML	VoiceXML	XCES
AL3	CDISC	DIG35	GAME	JLife	MTML	PML	RoadmOPS	TML	VRML	Xchart
ANML	CELLML	DLML	GBXML	JSML	MusicXML	PML	RosettaNet	TML	WAP	Xdelta
ANNOTEA	ChessGML	DMML	GDML	JSML	NAML	PML	RSS	TalkmL	WDDX	XDF
ANATML	ChordML	DocBook	GEML	JScoreML	XNAL	P3P	RuleML	TaxML	WebML	XForms
APML	ChordQL	DocScope	GEDML	KBML	NAA Ads	PDML	SML	TDL	WebDAV	XGF
APPML	CIM	DOD XML	GEN	LACITO	Navy DTD	PDX	SML	TDML	WellML	XGL
AQL	CIML	DPRL	GeoLang	LandXML	NewsML	PEF XML	SML	TEI	WeldingX	MXXGMML
APPEL	CIDS	DRI	GIML	LEDES	NML	PetroML	SML	ThML	Wf-XML	XHTML
ARML	CIDX	DSML	GXD	LegalXML	NISO DTB	PGML	SAML	TIM	WIDL	XIOP
ARML	XCIL	DSD	GXL	Life Data	NITF	PhysicsML	SABLE	TIM	WITSML	XLF
ASML	CLT	DXS	Ну ХМ	LitML	NLMXML	PICS	SAE J2008	TMML	WorldOS	XLIFF

Adapted from D.L. Brock

Multiple standards make it difficult to *merge* data.

Versioning occurs within the same standard.

Over time, versioning is a significant problem.

Laboratory for Manufacturing and Productivity

BOSTON COMMUTE

30 YEARS OF ENGINEERING THE REAL WORLD

Live Traffic Data

Live Weather Data

Construction Location

Adapted from D.L. Brock

Massachusetts Institute of Technology $\ensuremath{\mathbb{C}}$ 2010

DATA INTEGRATION

Merging XML data requires a "hub translator."

This is a non real-time process.

The number of "many to many" combinations is polynomial, as a function of the number of nodes.

An auxiliary language reduces the combinations.

PURPOSE

An auxiliary language is the glue that holds things together.

It is not a formal code like Java or C++.

The purpose is to make XML more effective.

INTERNET ARCHITECTURE

Target

ADVANTAGES

- Translation to M-XML
 - Achieve communication when the target is unknown
- Intelligent Data that self identifies, much like RFID
- Addresses the "many to many" problem
 - No need for a hub translator
- A standard way to describe and connect models
 Web Services and Software as a Service (SaaS)
- The *M Dictionary* represents an innovation

WORDS AND SEMANTICS

Cell n. – a manufacturing cell, in which a group of workers and/or machines work together as a team to produce dedicated set of products or assemblies.

Cell n. – usually microscopic structure containing nuclear and cytoplasmic material enclosed by a semi-permeable membrane and, in plants, a cell wall; the basic structural unit of all organisms.

M DICTIONARY

date.1 n. – particular day specified as the time something happens. July 4, 1776 was the date of the signing of the Declaration of Independence.

Data Format

ISO 8601 (string) - the international standard for date and time issued by the International Organization for Standardization (ISO).

pattern: ([0-9]{4})(-([0-9]{2})(-([0-9]{2})(T([0-9] {2}):([0-9]{2})(:([0-9]{2})(\.([0-9]+))?)?(Z|(([-+]) ([0-9]{2}):([0-9]{2})))?)?)?)?

ONTOLOGY

Relationships between words

EXAMPLE

car.1, noun. A motor vehicle with four wheels; usually propelled by an internal combustion engine.

Car_mirror.1

- One definition per word
- Relationships between words (ontology)
- mlanguage.mit.edu
- Web Services connection
 - GetWord
 - TestRelation
 - Other connections also available
 - The dictionary becomes part of the Internet

Laboratory for Manufacturing and Productivity

M DICTIONARY ENTRY

30 YEARS OF ENGINEERING THE REAL WORLD

Ttp://mianguage.mit.edu/websi	ite/						
dit View Favorites Tools Help							
Mttp://mlanguage.mit.edu/website/							
				The Da	ta Center typ	6	
		home	m language	web machines	applications	about	feedback
the dictionary the web s	services the sp	ecification					cr
			forecast		Search the M d	ictionary	
Search Results:							
Noun:							
forecast 1 prognosis 2 A	prediction about k	now someth	ning (as the weat	her) will develop			
	future demand. A	forecast c . Various f	an be constructed orecasting techni	d using quantitative m ques attempt to predi	ethods, qualitative ct one or more of t	methods, or he four com	r a combination of n ponents of demand
forecast.5 An estimate of extrinsic (external) or intrinsic trend. Example of forecasting forecast, qualitative forecastin Verb:	g techniques incluc ng method, quantit	le Box-Jenl tative forec	kins model, expoi asting method.	nential smoothing fore	cast, extrinsic fore		iou, inclinate foreca.
forecast.5 An estimate of extrinsic (external) or intrinsic trend. Example of forecasting forecast, qualitative forecastin Verb:	g techniques incluc ng method, quantit	le Box-Jenl tative forec	kins model, expor	nential smoothing fore	cast, extrinsic fore		
forecast.5 An estimate of extrinsic (external) or intrinsic trend. Example of forecasting forecast, qualitative forecastin Verb: forecast.2, calculate.2, estimation	g techniques incluc ng method, quantii late.7, reckon.4, co	le Box-Jenl tative forec	kins model, expor asting method. figure.16 Judg	e to be probable.	cast, extrinsic fore		
forecast.5 An estimate of extrinsic (external) or intrinsic trend. Example of forecasting forecast, qualitative forecastin Verb: forecast.2, calculate.2, estimation forecast.3, bode.1, portend.3 bode bad news.	g techniques incluc ng method, quantii nate.7, reckon.4, co 1, auspicate.2, pro	le Box-Jenl tative forec ount_on.1, ognosticate	kins model, expor asting method. figure.16 Judg .1, omen.2, press	e to be probable. age.3, betoken.1, fore	shadow.1, augur.2	, foretell.1, J	prefigure.1, predict.

- An improved method for XML semantics and syntax
- Base for interoperable data
- Exact search

IV. CONCLUSION

SOFTWARE LICENSES, MIT

Kratulos

(TLO Case No. 13752)

- Data integration
- Machine understandable semantics
- Connect models and data across the Internet
- Lee & Schuster
- MODS

(TLO Case No. 13645)

- Finite schedule software for make-to-stock Mfg.
- Heuristic that produces near optimal solution
- Very fast, large problems take seconds to run
- Other applications
- Schuster, Allen, Kar, & Lee

SOFTWARE LICENSES, MIT

- Lee-Schuster Semantic Enterprise Architecture
 - (TLO Case No. 13754)
 - Intranet application
 - Low cost alternative for ERP
 - Minimal implementation
 - Lee & Schuster

For information on licensing, contact:

Technology Licensing Office Massachusetts Institute of Technology Five Cambridge Center, Kendall Square Room NE25-230 Cambridge, MA 02142-1493

Tel: 617-253-6966 Fax: 617-258-6790

Email: <u>tlo@mit.edu</u>

Edmund W. Schuster

Laboratory for Manufacturing and Productivity Massachusetts Institute of Technology 77 Massachusetts Avenue, 35-135A Cambridge, MA 02139

edmund_w@mit.edu

www.ed-w.info

http://ingehygd.blogspot.com

